Environmental Economics

Dr. Daniel Sutter

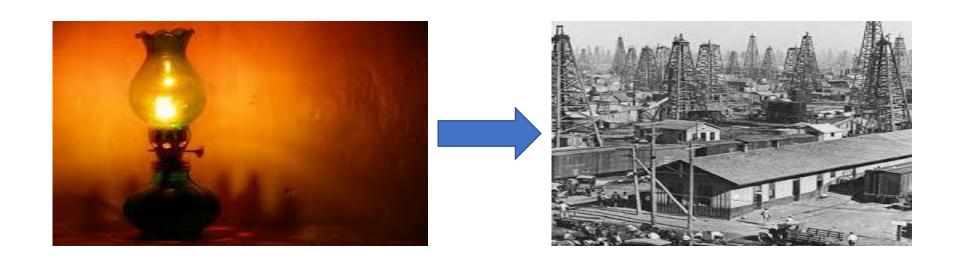
Charles G. Koch Professor of Economics

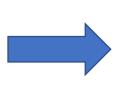
Manuel H. Johnson Center for Political Economy

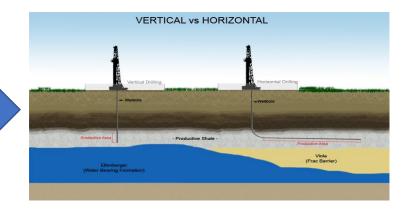
Troy University

Scarcity and Choice

Markets Work, generally


Proposition 16.C.1: (First Fundamental Theorem of Welfare Economics) If preferences are locally nonsatiated, and if (x^*, y^*, p) is a price equilibrium with transfers, then the allocation (x^*, y^*) is Pareto optimal. In particular, any Walrasian equilibrium allocation is Pareto optimal.


Discovery in the Economy



Environmental Economics: More Alternatives

-- ---

COMPARING COMPETITIVE AND EFFICIENT EQUILIBRIA USING MARGINAL BENEFIT AND MARGINAL COST: THE REFINED PETROLEUM MARKET IN THE PRESENCE OF A NEGATIVE EXTERNALITY

The MSC curve is found as the vertical sum of the MEC and the MPC curves. The intersection of MSC and MSB identifies the efficient equilibrium point at $P_e = \$26$ and $Q_e = 128,000$. Notice how this compares to the competitive equilibrium where $P_e = \$22$ and $Q_e = 160,000$, corresponding to the intersection of MPC and MPB. At Q_e MSB is below MSC, which means that society is giving up more in scarce resources to produce petroleum than it gains in benefits from consuming it.

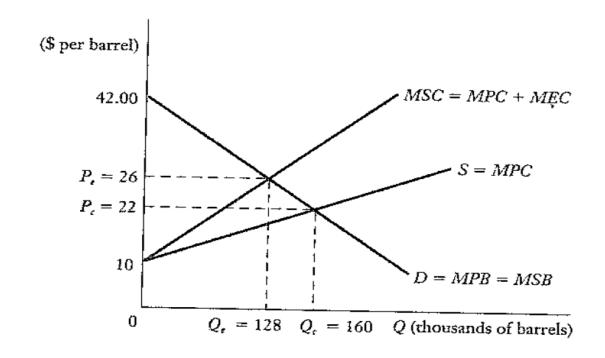


Table 2 EPA's costs, benefits, and net benefits of the CAFE rule

Input	Value (2009\$, billions)	
Costs		
Technology costs	140.0	
Accidents, congestion, and noise costs ^a	52.0	
Total costs	192.0	
Benefits		
Lifetime fuel savings	444.0	
Consumer surplus from additional driving	70.9	
Refueling time value	19.5	
Energy security benefits	24.2	
CO_2	46.4	
Non-CO ₂ greenhouse-gas impacts	n/a	
PM _{2.5} -related impacts	8.0	
Total benefits	613.0	
Net total benefits	421.0	

Source EPA and DOT (2011a, Table III-82) and EPA (2011a, Table 1)

^a These were included as negative benefits in EPA's tables. Estimates are for combined passenger cars and light trucks, 3 % discount rate, billions of 2009\$

Source: Ted Gayer and W. Kip Viscusi, "Overriding Consumer Preferences with Energy Regulations," *Journal of Regulatory Economics*, 2013

Table 6. Comparison of compliance strategies estimates

Compliance Strategy	GAO (94)	Rico (95)	EIA (94)
Switch and/or Blend Coals	55%	63%	59%
Purchase Allowances ^a	3%	9%	15%
Install Scrubbers	16%	11%	10%
Pre-Phase I Compliance ^b	18%	15%	10%
Switch to Natural Gas/Oil	5%	1%	3%
Retire Plants/Repowering	3%	1%	2%
Total	100%	100%	99%

^a The EIA find that 15 percent of utilities are using allowances in combination with other strategies.

Source: Dallas Burtraw, "Cost Savings Sans Allowance Trades? Evaluating the SO2 Emission Trading Program to Date," Resources for the Future Discussion Paper 95-30-REV

^b For Rico (1995) and GAO (1994), this includes reduced utilization, and substitution of Phase II sources.

What to do about climate change is inevitably an economic question

