Facts and Fiction: A Centrist View of Climate Change

Robert Mendelsohn

ICCC-12

The Heartland Institute

Global Warming Difficult to Stop

- Requires cooperation across most countries of the world
- Requires commitment to cost effective regulation
- Requires a dynamic solution that tightens over time

What is the best strategy for handling greenhouse gases?

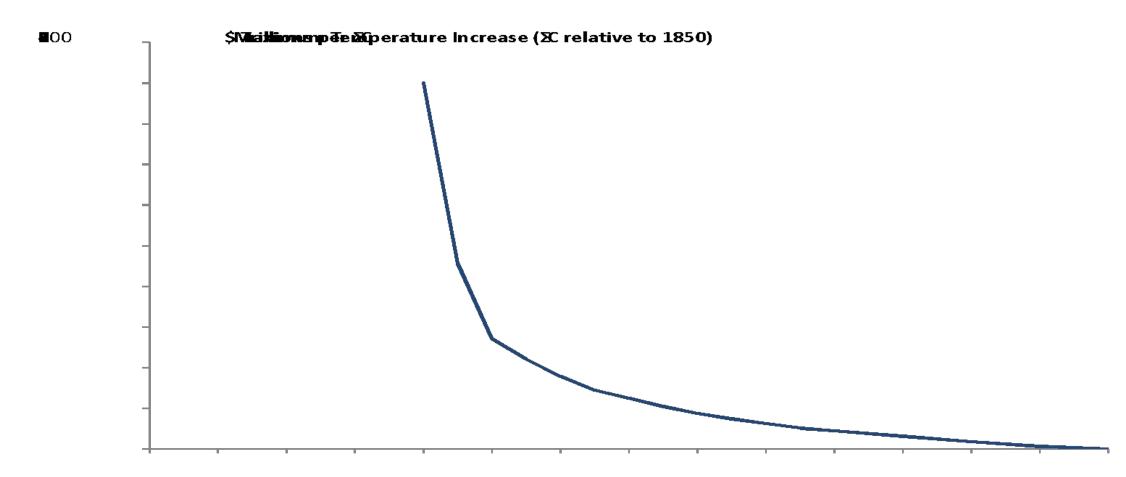
- Aggressive abatement- do everything possible to move towards a zero carbon economy quickly
- Zero abatement- no regulation, let the economy move forward without constraints
- Moderate abatement- use cost effective tools to gradually slow the accumulation of greenhouse gases in the atmosphere

Case for Aggressive Abatement (Stern)

- Inexpensive to quickly move to zero carbon economy
- 2. Discount rate is near zero
- 3. Climate impacts are catastrophic

Case for zero abatement

- 1. Any regulation would destroy the economy
- 2. Climate change is a hoax
 - Emissions do not cause concentrations to rise or Concentrations do not cause climate to change or Climate change does not cause damage


Case for Modest Abatement

- Aggressive Mitigation very expensive
- Unmitigated climate change will be very expensive
- Modest amount of abatement is inexpensive and the resulting modest warming will not be that harmful

Is the cost of mitigation low or high?

- Stringent mitigation required for low temperature targets is very expensive
 - Present value of \$50-60 trillion
 - •Requires carbon price today of \$100/ton CO₂
 - Prices rise at half the interest rate
- Modest mitigation required for 4°C target
 - Present value ≈\$10 trillion
 - •Carbon price today \$5/ton CO₂
 - Prices rise at half the interest rate

Marginal Cost of Max Temperature Targets

Low temperatures are expensive

- Must abandon existing capital and some stocks of fossil fuels
- Must replace with alternative energy at huge scale
 - Double nuclear power
 - 1 million 2MW windmills
 - 2 million ha of solar power
 - Carbon capture and storage (CCS) on all coal and gas plants
 - Biofuels with CCS on 1/6th cropland
 - Bioenergy with CCS from global forests
 - Increase efficiency of all cars to 60mpg
 - Make all buildings energy efficient

More Modest Temperature, Less Mitigation

- Only need a fraction of methods required for stringent target
- Time to implement
- Much fewer stranded assets
- Postpone expensive mitigation lowering cost

Mitigation Must Be Cost Effective

- Above cost estimates assume every polluter regulated
 - Universal participation of countries
 - •2/3 of future mitigation in developing countries
 - Doubles cost if half countries participate
- Assumes MC equated across every polluter- common carbon price
 - No polluters are exempt
 - Every cost effective mitigation utilized

Discount Rate is not Zero

- Discount rate for capital investment should be equal to real interest rate for economy
- Real interest rate has been near 4% since industrial revolution
- •Even if interest rate declines as growth rate declines, the interest rate will get no lower than 3%

Timing is important

- Mitigation must start now
- Climate impacts are long delayed
 - Takes decades for greenhouse gases to warm ocean
 - Warmer ocean leads to warmer climate
 - •Takes time for ecosystems and ice sheets to react
- Higher discount rate means climate damage has lower value

Climate Science

- Global emissions of greenhouse gases are about 45Gt/yr of CO₂e
 - Emissions largely from burning fossil fuels
- Greenhouse gas concentrations are now about 450 ppme (275 in 1750)
- Global temperatures are about 1°C warmer than in 1900
 - Almost everyone notices it is warmer
 - But the change is small relative to change within a day
 - Washington DC has 8°C average diurnal range

Economy is Affected

- Only a small fraction of economy vulnerable to climate change
- Biggest vulnerable sector is agriculture
 - •4°C warming could cause 40-60% potential losses
- Higher cooling costs
- Water likely to be scarcer
- Coastal inundation possible

Nonmarket effects are likely

- Large potential health effects from heat stress and disease
- Large long term ecosystem changes
- Coastal inundation of wetlands and beaches likely

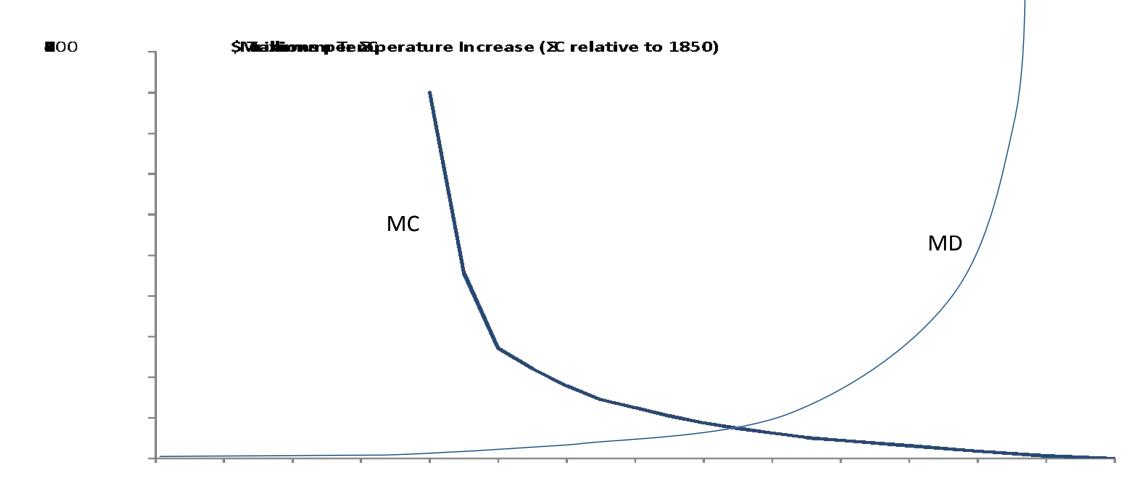
Climate Damage Depends on Adaptation

- Climate change can cause crops to fail, coastal structures to be inundated, people to die from excess heat and new diseases
- •If farmers adjust crops grown, if communities protect developed coastlines, if people cool their homes, and if public health fights new disease, these effects will be much smaller
- Adaptation is in the interest of every person, firm, and community because it will make them better off

Catastrophic Ice Sheet Melt

- Warming could raise the sea by 5-25 meters if all ice sheets melt
- Higher temperatures increase probability, speed, and extent of melting
- If happened tomorrow, would flood all major coastal cities and cause tens of \$ trillions of damage
- But melting will take several centuries
- Present value of damage is in \$ trillions
- If protect major cities, present value closer to \$ hundreds of billions

Ecosystems will change


- •Up to 5°C, biomes will shift poleward, forest growth will rise, forestland will expand, and biomass will increase
 - Changes likely beneficial

- •Beyond 5°C, biomes will continue to move poleward, but forest growth will level off, and biomass will likely fall.
 - Changes likely harmful

Climate Damage Rises with Temperature

- •Damage likely very low up to 2°C
- •Damage gradually rises as temperatures approach 4°C
- Damage can get very high above 4°C

Optimal Max Temperature Target

